Rust基金会选举出新的项目领导人
据Rust Blog最新发布来看,Rust基金会选举出新的项目领导人:
阅读原文:https://blog.rust-lang.org/2023/10/19/announcing-the-new-rust-project-directors.html
rip:Rust中的pip
rip是一个更加快速的pip工具,使用rip快速解决和安装Python软件包。
Repo:https://github.com/prefix-dev/rip 阅读原文:https://prefix.dev/blog/introducing_rip
推荐:一些还不错的Rust学习资源
受reddit上帖子的启发,搬运@RyzRx的回复贴,一些还不错的Rust学习资源:
YT Channels
https://www.youtube.com/@jonhoo https://www.youtube.com/@JeremyChone https://www.youtube.com/@NoBoilerplate https://www.youtube.com/@letsgetrusty https://www.youtube.com/@codetothemoon https://www.youtube.com/@timClicks https://www.youtube.com/@fasterthanlime https://www.youtube.com/@_noisecode https://www.youtube.com/@ThePrimeTimeagen https://www.youtube.com/@chrisbiscardi https://www.youtube.com/@rust360
Documentations
https://doc.rust-lang.org/book/ https://rust-book.cs.brown.edu/ https://rust-unofficial.github.io/too-many-lists/ https://rust-script.org/ https://burn.dev/book/motivation.html https://sotrh.github.io/learn-wgpu/#what-is-wgpu https://bevyengine.org/learn/book/contributing/docs/
Why Rust (Fun Stuff): Interview with Senior Rust Developer in 2023
https://youtu.be/TGfQu0bQTKc?feature=shared
阅读原文:https://www.reddit.com/r/rust/comments/17bm5bz/what_are_the_best_tools_to_learn_rust_in_the_most/
blaze :一个使用Spark的查询引擎
blaze是一个使用Spark的查询引擎,它以擎使用 Apache Spark 语言,并以 Arrow-DataFusion 为核心。
以下为Github摘录:
The Blaze accelerator for Apache Spark leverages native vectorized execution to accelerate query processing. It combines the power of the Apache Arrow-DataFusion library and the scale of the Spark distributed computing framework.
Apache Spark 的 Blaze 加速器利用本机矢量化执行来加速查询处理。它结合了 Apache Arrow-DataFusion 库的强大功能和 Spark 分布式计算框架的规模。 Blaze takes a fully optimized physical plan from Spark, mapping it into DataFusion's execution plan, and performs native plan computation in Spark executors.
Blaze 从 Spark 获取完全优化的物理计划,将其映射到 DataFusion 的执行计划中,并在 Spark 执行器中执行本机计划计算。 Blaze is composed of the following high-level components:
Blaze 由以下高级组件组成: Spark Extension: hooks the whole accelerator into Spark execution lifetime. Spark Shims: specialized codes for different versions of spark. Native Engine: implements the native engine in rust, including: ExecutionPlan protobuf specification JNI gateway Customized operators, expressions, functions Based on the inherent well-defined extensibility of DataFusion, Blaze can be easily extended to support:
基于 DataFusion 固有的定义良好的可扩展性,Blaze 可以轻松扩展以支持: Various object stores. Operators. Simple and Aggregate functions. File formats. We encourage you to extend DataFusion capability directly and add the supports in Blaze with simple modifications in plan-serde and extension translation.
我们鼓励您直接扩展 DataFusion 功能,并通过对 plan-serde 和扩展翻译进行简单修改来添加 Blaze 中的支持。
阅读原文:https://twitter.com/rustjobs_dev/status/1714941732914126859 Repo: https://github.com/blaze-init/blaze
gitui:一个终端UI小工具
Awesome!gitui是一个使用Rust编写的terminal UI小工具🔧。
阅读原文:https://twitter.com/Extrawurst/status/1714979269615513607 Repo:https://github.com/extrawurst/gitui
玩梗时刻:Rust是分析的未来吗?
在 X
上的一个很有意思的帖子:Is Rust the Future of Analytics?
阅读原文:https://twitter.com/AstraKernel/status/1714905244549922865
From 日报小组 Lambert
社区学习交流平台订阅:
评论区
写评论还没有评论